80 research outputs found

    Perilipin 2 (PLIN2)-Deficiency Does Not Increase Cholesterol-Induced Toxicity in Macrophages

    Get PDF
    Interventions on macrophages/foam cells to redirect intracellular cholesterol towards efflux pathways could become a very valuable addition to our therapeutic arsenal against atherosclerosis. However, certain manipulations of the cholesteryl ester cycle, such as the inhibition of ACAT1, an ER-resident enzyme that re-esterifies cholesterol, are not well tolerated. Previously we showed that targeting perilipin-2 (PLIN2), a major lipid droplet (LD)-associated protein in macrophages, prevents foam cell formation and protects against atherosclerosis. Here we have assessed the tolerance of PLIN2-deficient bone marrow derived macrophages (BMM) to several lipid loading conditions similar to the found during atherosclerosis development, including exposure to modified low-density lipoprotein (mLDL) and 7-ketocholesterol (7-KC), a free cholesterol (FC) metabolite, in media with or without cholesterol acceptors. BMM isolated from mice that do or do not express PLIN2 were tested for apoptosis (TUNEL and cleaved caspase-3), ER stress (CHOP induction and XBP-1 splicing), and inflammation (TNF-α and IL-6 mRNA levels). Like in other cell types, PLIN2 deficiency impairs LD buildup in BMM. However, while most stress parameters were elevated in macrophages under ACAT inhibition and 7-KC loading, PLIN2 inactivation was well tolerated. The data support the safety of targeting PLIN2 to prevent foam cell formation and atherosclerosis

    Higher thermal acclimation potential of respiration but not photosynthesis in two alpine Picea taxa in contrast to two lowland congeners

    Get PDF
    The members of the genus Picea form a dominant component in many alpine and boreal forests which are the major sink for atmospheric CO2. However, little is known about the growth response and acclimation of CO2 exchange characteristics to high temperature stress in Picea taxa from different altitudes. Gas exchange parameters and growth characteristics were recorded from four year old seedlings of two alpine (Picea likiangensis vars. rubescens and linzhiensis) and two lowland (P. koraiensis and P. meyeri) taxa. Seedlings were grown at moderate (25°C/15°C) and high (35°C/25°C) day/night temperatures, for four months. The approximated biomass increment (ΔD2H) for all taxa decreased under high temperature stress, associated with decreased photosynthesis and increased respiration. However, the two alpine taxa exhibited lower photosynthetic acclimation and higher respiratory acclimation than either lowland taxon. Moreover, higher leaf dry mass per unit area (LMA) and leaf nitrogen content per unit area (Narea), and a smaller change in the nitrogen use efficiency of photosynthesis (PNUE) for lowland taxa indicated that these maintained higher homeostasis of photosynthesis than alpine taxa. The higher respiration rates produced more energy for repair and maintenance biomass, especially for higher photosynthetic activity for lowland taxa, which causes lower respiratory acclimation. Thus, the changes of ΔD2H for alpine spruces were larger than that for lowland spruces. These results indicate that long term heat stress negatively impact on the growth of Picea seedlings, and alpine taxa are more affected than low altitude ones by high temperature stress. Hence the altitude ranges of Picea taxa should be taken into account when predicting changes to carbon fluxes in warmer conditions

    Critical role of TLR2 and MyD88 for functional response of macrophages to a group IIA-Secreted phospholipase A2 from snake venom

    Get PDF
    artículo (arbitrado) -- Universidad de Costa Rica, Instituto de Investigaciones Clodomiro Picado. 2014The snake venom MT-III is a group IIA secreted phospholipase A2 (sPLA2) enzyme with functional and structural similarities with mammalian pro-inflammatory sPLA2s of the same group. Previously, we demonstrated that MT-III directly activates the innate inflammatory response of macrophages, including release of inflammatory mediators and formation of lipid droplets (LDs). However, the mechanisms coordinating these processes remain unclear. In the present study, by using TLR22/2 or MyD882/2 or C57BL/6 (WT) male mice, we report that TLR2 and MyD88 signaling have a critical role in MT-III-induced inflammatory response in macrophages. MT-III caused a marked release of PGE2, PGD2, PGJ2, IL-1b and IL-10 and increased the number of LDs in WT macrophages. In MT-III-stimulated TLR22/2 macrophages, formation of LDs and release of eicosanoids and cytokines were abrogated. In MyD882/2 macrophages, MT-III-induced release of PGE2, IL-1b and IL-10 was abrogated, but release of PGD2 and PGJ2 was maintained. In addition, COX-2 protein expression seen in MT-III-stimulated WT macrophages was abolished in both TLR22/2 and MyD882/2 cells, while perilipin 2 expression was abolished only in MyD882/2 cells. We further demonstrated a reduction of saturated, monounsaturated and polyunsaturated fatty acids and a release of the TLR2 agonists palmitic and oleic acid from MT-III-stimulated WT macrophages compared with WT control cells, thus suggesting these fatty acids as major messengers for MT-III-induced engagement of TLR2/MyD88 signaling. Collectively, our findings identify for the first time a TLR2 and MyD88-dependent mechanism that underlies group IIA sPLA2- induced inflammatory response in macrophages.This investigation was supported by research grants from FAPESP, Sao Paulo, Brazil (www.fapesp.br), grants 11/21341-5 and 10/06345-1, INCTTOX, Sao Paulo, Brazil (www.incttox.com.br), grant 573790/2008-6, CNPq PQ, Brazil (www.cnpq.br), grant 306920/2011-5, Brazil, Spanish Ministery of Science and Innovation, Spain (http://web.micinn.es/), grant BFU2010-18826.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∼ 3 at 40◦ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution

    Global variability in leaf respiration in relation to climate, plant functional types and leaf traits

    Get PDF
    • Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits. • Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark. • Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8–28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants. • The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)

    Challenges and opportunities for integrating lake ecosystem modelling approaches

    Full text link
    corecore